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ABSTRACT 

Smartwatches present inherent input difficulties due to the 

small touchscreen. In a controlled experiment with 14 

participants with upper body motor impairments, we 

compared smartwatch touchscreen input to input on the 

bezel of the watch, the latter of which should at least 

theoretically stabilize user input due to its hard edge. 

Results demonstrate a speed-accuracy tradeoff whereby the 

touchscreen is faster but the bezel is more accurate.  

Author Keywords 
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ACM Classification Keywords 
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INTRODUCTION AND BACKGROUND 
Smartwatches present an inherent accessibility challenge: 

the small screen, often only ~4 cm in width, requires 

precise input and can be difficult for people with upper 

body motor impairments to use [6]. Touchscreen 

accessibility work, however, has largely focused on 

smartphones and tablets, showing, for example, that people 

with motor impairments encounter higher error rates [2, 8] 

and exhibit longer dwell times than people without motor 

impairments [4]. Multi-touch gestures and text entry can 

also be particularly difficult [1, 5, 10].  

One strategy to address these challenges is to stabilize the 

user’s finger by utilizing the hard edges of the screen [3, 

12]. While modern smartwatches do not have the same hard 

screen edges as older mobile devices, taps or swipes on the 

bezel (Figure 1) rather than the touchscreen may provide 

similar benefits while also mitigating the fat-finger problem 

(a common issue with small screens [9]). Indeed, a study by 

Malu et al. [6] showed that users with motor impairments 

were open to the idea of bezel gestures and preferred them 

to other non-touchscreen input options (skin or wristband 

input). However, that qualitative study did not measure 

users’ input performance with the bezel. 

We report on a controlled lab study comparing touchscreen 

and bezel input with 14 participants with upper body motor 

impairments. Our findings reveal a speed-accuracy tradeoff: 

the bezel significantly lowered error rates with small 

targets, but the touchscreen was significantly faster. We 

discuss the implications of these findings and subjective 

feedback, and outline next steps to build on this research. 

METHOD 

Our controlled experiment compared bezel and touchscreen 

input performance for two target layouts (4 and 8 targets). 

Participants 

Fourteen participants (6 women, 8 men) with upper body 

motor impairments were recruited. They were on average 

36.9 years old (SD=13.6) and their most common diagnosed 

medical conditions were cerebral palsy (N=5), muscular 

dystrophy (N=2), and spinal muscular atrophy (N=2). On a 

standardized Box-and-Block test of gross manual dexterity, 

scores ranged from 0–48 (adults without motor impairments 

score ~80 [7]). All owned a smartphone, two owned a 

smartwatch, and one owned a wrist-worn fitness tracker. 

Apparatus and Procedure 

We built a testbed in Swift for a 42mm Apple Watch 1 

(Figure 2). While the screen was 24x27mm, we restricted 

the active area to 24x24mm so the vertical and horizontal 

spans were equal. For touchscreen input, this area was 

divided into a 2x2 grid for the 4-target layout and a 4x2 grid 

for the 8-target condition (mimicking common layouts in 

watchOS). For bezel input, we affixed conductive fabric to 

a smartwatch case (Figure 1). These touchpads were wired 

to an Arduino Uno that connected via Bluetooth to an 

iPhone 5s paired to the watch. For the 4-target condition, 

we centered a 24mm-long target along each side of the case 

(this length was chosen to match the active touchscreen size 

rather than the full watch bezel); touchpads were 5mm in 

height. For the 8-target layout, eight 12mm-long touchpads 

were centered on the sides and corners of the case.  

Study sessions were 90 minutes and began with background 

questions and the Box-and-Block test. Then, the four 

experimental conditions were presented in counterbalanced 

order using a balanced Latin Square. For each condition, 
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Touchpads 
on each side 

Touchpads on each 
side and corner 

Figure 1. Bezel input: four (left) or eight (right) conductive 

fabric touchpads were affixed to a smartwatch case. 
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participants completed a practice block (8 tapping trials) 

followed by three test blocks (16 trials each) with brief rests 

between blocks. Within each block, each target location 

was presented the same number of times (e.g., 2 times for 

the 8-target layout and 4 times for the 4-target layout), and 

trials were randomly ordered such that a single target would 

not be appear twice in a row. For each trial, a visual cue 

was shown (Figure 2) and an audio cue played. A trial 

ended upon successfully tapping the target or after a 10-

second timeout (indicating substantial difficulty). The 

session concluded with semi-structured questions.  

Study Design, Data and Analysis 

We used a 22 within-subjects design: technique (bezel vs. 

touchscreen)  layout (4- vs. 8-target). We hypothesized 

that bezel input would be faster (H1) and more accurate 

(H2) than touchscreen input. The dependent variables of 

time and error rate violated the normality assumption of 

ANOVAs (shown by Q-Q plots and Shapiro-Wilk’s W 

tests), so we used 22 repeated measures (technique  

layout) ANOVAs with Aligned Rank Transform—a non-

parametric alternative [11]. Posthoc pairwise comparisons 

used Bonferroni-adjusted Wilcoxon signed rank tests. 

RESULTS 

Overall, we found a speed-accuracy tradeoff, as shown in 

Figure 3. The touchscreen was significantly faster (M = 

1.2s, SD = 0.2) than the bezel (M = 1.7s, SD = 0.2) (main 

effect of technique: F1,13 = 22.60, p < .001, 𝜂2𝑝 = .63). 

Reflecting differences in target size, the 4-target layout was 

significantly faster than the 8-target layout, at on average 

1.3s (SD = 0.4) versus 1.6s (SD = 0.4) (main effect of 

layout: F1,13 = 50.50, p < .001, 𝜂2𝑝 = .79). The layout x 

technique interaction effect was not significant for time. 

In contrast, the bezel yielded a significantly lower error rate 

(M = 3.5%, SD = 1.0) than the touchscreen (M = 10.0%, SD 

= 11.3) (main effect of technique: F1,13 = 18.62, p < .001, 

𝜂2𝑝 = .58). As expected again, the 4-target layout resulted in 

a significantly lower error rate (M = 2.5%, SD = 0.5) than 

the 8-target layout (M = 11.1%, SD = 9.79) (main effect of 

layout: F1,13 = 26.54, p < .001, 𝜂2𝑝 = .67). However, there 

was also a significant technique  layout interaction effect 

(F1,13 = 37.20, p < .001, 𝜂2𝑝 = .74). Posthoc pairwise 

comparisons showed that the touchscreen was particularly 

error prone with the small targets in the 8-target layout 

compared to the bezel (p < .05), but that the two types of 

input were not different for the 4-target layout (p > .05). 

Subjectively, participants largely favored the touchscreen 

despite its higher error rate. For example, all but one 

participant felt the touchscreen was more comfortable (e.g., 

due to familiarity, did not require twisting the wrist) and 

easier to use (e.g., due to the flat surface and combined 

input/output space). However, participants also identified 

advantages to bezel input, such as the ability to use multiple 

fingers (“I found myself using only the index finger for the 

touchscreen but for the bezel I was using multiple fingers”, 

P8), and different finger orientations (“different sides of my 

finger”, P5). Four participants also felt the bezel could be 

useful for quick tasks (e.g., stopwatch start/stop, P9), three 

thought it could be useful when occlusion is a problem 

(e.g., manipulating a map), and one participant (P6) 

suggested the bezel could be a more accessible alternative 

to the physical buttons on the side of the watch.  

DISCUSSION AND FUTURE WORK 

Our findings reveal a speed-accuracy tradeoff that supports 

hypothesis H2 but not H1: the touchscreen is faster but the 

bezel is more accurate, particularly for small targets. While 

participants largely preferred the touchscreen for general 

input, the bezel could be useful for specific scenarios, such 

as when needing to limit visual occlusion, performing quick 

shortcut gestures, or as an alternative to small physical 

buttons. Several possibilities exist to improve the bezel 

input, such as increasing the size of the touchpads, adding 

physical guides (e.g., notches) to stabilize input, only using 

the watch sides that are within easiest reach, and exploring 

swiping as well as tapping. Ultimately, while the bezel had 

previously shown promise for accessible off-screen input 

[6], we recommend using it as a complement to the 

touchscreen and focusing on further design tweaks. 
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    4-target    8-target    4-target (top) 8-target (corner) 

Figure 2. Visual cues. Participants tapped directly on the 

touchscreen target (left) or on the closest bezel target (right). 

 

 
Figure 3. Boxplots of average trial completion time (top) and 

error rate (bottom). Lower values are better in both graphs. 
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