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Abstract 
Inclusivity for blind and low vision (BLV) professionals in data sci-
ence and analytics is limited by a gap in understanding their unique 
data analysis needs. We contribute to the literature by reporting 
on a two-step online survey delving into the experiences and chal-
lenges faced by BLV individuals engaged in data-related roles. Our 
fndings highlight that despite expertise in programming and GUI-
based analysis tools, BLV professionals faced accessibility issues at 
various points in the data analysis pipeline—issues ranging from 
data loading and transformation, availability and compatibility of 
data tools with assistive technology, and visualization authoring. 
The prevalent use of tools such as Excel, Python, and SAS along-
side heavy reliance on assistive technologies highlights persistent 
accessibility challenges. Furthermore, frequent collaboration with 
sighted colleagues indicates compromised independence. These 
results underscore the urgent need for “born accessible” tools that 
ensure the inclusivity and autonomy of BLV professionals in the 
feld of data science. 
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• Human-centered computing → Empirical studies in acces-
sibility; Visualization. 
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1 Introduction 
As the feld of visualization and data science continues to expand, it 
is becoming increasingly inclusive of blind individuals [2, 3, 5, 8, 9, 
12, 14]. Despite these advancements, there remains a profound lack 
of understanding regarding the specifc data analysis needs of blind 
and low vision (BLV) professionals. Existing data analysis tools are 
designed for sighted users, which marginalizes blind professionals 
by not accommodating their unique interaction paradigms. This 
not only restricts access to the feld but also curtails the potential 
contributions of BLV professionals within the broader information 
landscape. But to know how to mitigate the shortfall in the frst 
place, we will need to know the specifc needs of BLV professionals 
for data analysis in situations where they difer from sighted users. 
To address this signifcant knowledge gap, we designed a two-step 
online survey aimed at understanding the data analysis practices of 
BLV information professionals. We uncover the specifc challenges 
and strategies employed by BLV professionals in navigating the 
data-driven aspects of their careers. Accessibility challenges were 
prevalent, with heavy reliance on assistive technologies like screen 
readers. Collaboration with sighted colleagues was often necessary 
for creating and interpreting visual data, highlighting the need 
for inherently accessible data visualization tools. To support BLV 
professionals, we must innovate and develop “born accessible” [10] 
tools to ensure full inclusivity and independence in data science. 

2 Background 
We review the literature on accessible visualization and data analy-
sis practices; focusing on the challenges faced by BLV individuals 
in learning and using visualizations, and employment. Historically, 
accessibility in data visualization for BLV users relied on equiv-
alence methods. Smaller visualizations had textual descriptions, 
while larger datasets were accessible through downloadable fles 
for fexible analysis. An example from a recovery.gov case study [11] 
states: “Because visualizations are inherently inaccessible, allowing 
for download of data sets allows users to analyze the data in any 
manner that they prefer.”. However, limited research in this area 
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highlights the need for further development [9, 14]. Recent advance-
ments, such as Jung et al.’s guidelines for writing efective alternate 
texts for visualizations, recommend concise, plain language descrip-
tions to accommodate the diverse needs of blind users [8]. Kim et 
al.’s research highlights the importance of context in visualization, 
identifying distinct literacy tasks for reading and creating visualiza-
tions, and emphasizing the varying experiences of BLV users based 
on the visualization’s purpose, whether exploratory or explana-
tory [9]. These insights drive our study to enhance understanding 
and improve accessibility of data visualizations. 

Education at all levels, especially in STEM, often includes inac-
cessible data analytics modules. Butler et al. [1] highlight signifcant 
accessibility barriers for vision-impaired students in Australia, par-
ticularly afecting their participation in STEM felds. These barriers 
infuence BLV students’ academic and career choices due to visually-
focused curricula in subjects like math and science. The lack of 
afordable assistive technologies in classrooms exacerbates these 
challenges [7]. However, more recent “born accessible” teaching 
approaches are examples of solutions that support BLV individu-
als at early stages of their data analysis learning [19]. Traditional 
low-tech teaching methods, like using pins and rubber bands to 
construct graphs [5], pose risks and limitations, and often lead stu-
dents to avoid using graphs post-education [25]. Despite eforts 
to introduce data visualization early in education, BLV students 
struggle with independent data exploration in higher studies due 
to inadequate tools, impacting their career choices [2, 25]. Despite 
legislative eforts to foster workplace inclusion, people with disabili-
ties face signifcant employment barriers compared to non-disabled 
peers. Negative employer attitudes often lead to discrimination in 
hiring, promotion, and other employment aspects [16]. Further-
more, employment rates for blind and visually impaired individuals 
have not signifcantly improved [17]. Employers may view BLV em-
ployees as less capable due to inaccessible workplace technologies, 
which hinder job performance and reinforce employment barriers. 
A contributing factor to these persistent perceptions is that em-
ployers may view BLV employees as less capable due to the use of 
inaccessible workplace technologies. These technologies not only 
hinder BLV individuals’ job performance but also reinforce barriers 
to efective employment. 

3 Survey Methodology and Findings 
We designed an online survey instrument to collect data about 
the analysis and visualization practices of BLV professionals. To 
ground our research in real-world experiences, we consulted a 
panel of four blind professionals with advanced degrees who regu-
larly conduct data analysis. They advised us to explore the broader 
conceptual knowledge of data analysis and understand personal 
accessibility workarounds and challenges. Our panel explained that 
BLV students can stay in K-12 until age 22, potentially entering the 
workforce later than their sighted peers. We developed a survey 
to explore the challenges, workarounds, and experiences of data 
analysis among BLV individuals, making adjustments based on 
our panel’s recommendations to ensure inclusivity. We developed 
survey questions focusing on demographics, assistive technology, 
and data analysis tools; making adjustments based on our panel’s 
recommendations to ensure inclusivity. Given the broad scope of 

data analysis and visualization, we included statistical, evidence, 
qualitative, geographic, marking, and free-form analysis types (as 
recommended by our panel). 

We screened participants based on these criteria: (1) adults 21+, 
(2) some degree of blindness, (3) currently employed, and (4) profes-
sional experience in data analysis. We sent survey invitations via 
listservs for blind professionals (e.g., National Federation of the 
Blind) and AccessComputing. The survey was hosted on Qualtrics 
and underwent accessibility checks with a screen reader. Our panel 
recommended that we broadly understand the types of data analy-
ses performed by BLV individuals, and also the varying levels of 
disability. In our work, we adopt a social model of disability [13], 
and wanted our participants to self-report their lived-experiences 
and identities as analysts (as recommended by our panel). Through 
our screening questions (see supplementary material), we were 
able to collect data on a broad list of data analysis types (e.g., text 
analysis) and workfows; allowing us to screen our participants for 
the longer survey. We received 2,000 responses within 48 hours, 
likely boosted by a social media post (“freegiftcard”) that we were 
not involved with, leading to many fraudulent entries. To address 
this, we revised the protocol, added open-ended screening ques-
tions, and warned about fraud consequences. After consulting our 
Institutional Review Board, we increased outreach through local 
NFB chapters, excluded multiple submissions from single IPs, and 
fltered out inconsistent responses. Two researchers reviewed open-
ended responses and invited 47 participants to the main survey, 
eliminating fraudulent and outlier responses to yield 28 valid re-
sponses. Given the potential for fraudulent responses, we took a 
very conservative and careful approach. Screened participants re-
ceived a $10 gift card for completing the main survey. We used 
descriptive methods for fxed-response data and deductive thematic 
analysis for open-ended responses, starting with initial codes and 
adding emergent codes. 

Our participants self-identifed themselves with diverse degrees 
of visual impairment: 8 were legally blind, 7 visually impaired, 5 
with low-vision, 3 with light perception only, and 5 with no light 
perception. Eight had congenital vision loss, 6 began losing vision 
between 6 months to 10 years, and 16 experienced vision loss after 
the age of 10. Perceptions of impairment vary among BLV individ-
uals, as Massof notes [15], are often infuenced by whether individ-
uals identify with having low-vision or blindness, afecting their 
use of assistive technologies and handling of daily challenges. Our 
survey ofered varied response options to accommodate such per-
sonal blindness perspectives. As described by our Blind co-author: 
legal blindness defnitions can vary across countries; and from an 
individual’s perspective, a person who is legally blind may or may 
not have light perception. Some individuals with some light percep-
tion, or other visual impairments may choose to identify as Blind 
or Low-vision. For the sake of data analysis, we have combined the 
categories of ’no light perception’, ’legally blind’, and ’Blind’ into 
’Blind’; and combined ’light perception’, ’visually impaired’, and 
’low-vision’ into ’Low-vision’. This resulted in our data having re-
sponses from 13 Blind, and 15 Low-vision individuals (indicated 
by SurveyID-B/SurveyID-LV in our quotes). 

All participants had at least a high school diploma, with 18 
holding bachelor’s degrees, 6 master’s degrees, and 2 doctorates. 
Professionally, they worked as data or business analysts, and in roles 
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like operations manager, accessibility consultant, and research staf; 
indicating broad engagement with data analysis and visualization. 
Most participants had at least 2 years of programming experience, 
with 15 having 5-10 years, and at least 10 had experience in web, 
mobile, desktop development, or data science. 

3.1 Data Analysis Goals, Types, and Tools 
Open-ended survey responses indicate that individuals conduct 
a variety of analyses, ranging from descriptive to predictive, and 
their data analysis goals include steps like data cleaning, data ma-
nipulation through querying, and analysis using both visualization 
and non-visual statistical methods. Participants worked on tasks 
such as data collection through surveys or focus groups, identify-
ing trends, patterns, and other statistical relationships, and were 
often responsible for database management, from simple spread-
sheet maintenance to manipulating and querying data, as well as 
visualizing data. Tool use was widespread and diverse, commonly 
involving spreadsheet/tabular data analysis using Excel, Python, R, 
SAS, and other tools depending on the analysis task. S10-B, a JAWS 
screen-reader user, used SAS for analysis, along with Excel for data 
manipulation: “I actually use SAS for all ‘real’ statistical analysis, but 
fnd that it often displays/reads better with Jaws in Excel, so I often 
copy from SAS to Excel. I also use Excel/CSV for organizing, cleaning 
and organizing data prior to importing into SAS.” 

Most participants used assistive technology like screen readers 
and magnifcation to access data and charts, listing devices such 
as screen readers, tactile graphics, audio graphs, magnifers, and 
Braille keyboards. They also benefted from predictive text (S28-B) 
and screen sharing with sighted colleagues (S3-B), using Zoom fea-
tures for both data visualizations and tabular views like tables and 
spreadsheets. The use of screen readers for visualizations suggests 
access to alt-text, captions, or advanced screen reader features such 
as auto-captioning or OCR (e.g., JAWS). Oftentimes managing data 
and analyzing data involves collaboration with other individuals. 
S6-B described the various actors involved as follows: “Currently I 
determine the type of information collected and then I analyze it from 
a team of outreach consultants that work with local school districts, 
cooperative regions, parents, etc., concerning the services we provide.” 

3.2 Collaboration Practices 
Consistent with fndings from prior work [2], most participants col-
laborate with sighted individuals as part of their analysis workfow, 
though the goals varied—sometimes after completing their tasks 
independently, sometimes during the analysis process. Collabora-
tion was not always for accessibility purposes, as S6-B noted: “Yes, 
but not for accessibility, more interpretation of results.” Sighted col-
leagues often helped with visual tasks such as creating charts and 
providing feedback, acting as visualization authors by taking sum-
marized data and creating visual presentations (S12-B). Participants 
appreciated feedback on visual aesthetics to ensure reports were 
(S1-B; no light perception) “formatted in a visual, pleasing manner.”. 
This quote from S8-LV illustrates how the participants may work 
with colleagues, but take ownership of an analytical task: “Typically 
my analysis is independent. I will often send graphs or summaries to 
sighted individuals, but that is not really part of my workfow. I like 

to get feedback from them on how the graph looks aesthetically and 
if anything needs to be improved.”. 

While collaboration was viewed positively, participants also ex-
pressed a desire for independence, with (S9-LV) stating, “sometimes I 
feel like [an] annoyance for needing help and would like to be indepen-
dent.” Accessibility issues in the analytical tools used by BLV users 
often required assistance from sighted colleagues, which would not 
have been necessary otherwise. S10-B explained how layout and 
visual aesthetics that sighted individuals rely on could introduce 
accessibility issues during non-visual access: ‘I fnd that sighted 
people using Excel like to leave blank columns or rows for better vi-
sual layout, which sucks using JAWS and can mess up data analysis. 
So I am constantly cautioning against merged cells or blank rows or 
columns. Also, I have discovered that with text entries, JAWS may 
read the entire contents of a cell but visually much is cut of, so this 
causes confusion between sighted and blind persons.” 

3.3 Authoring Data Visualizations 
Participants’ goals for creating data visualizations focused on clear 
and efective communication, improved data accessibility, and ele-
ments like labels, color use, and visual structure complexity. They 
aimed to present data in an understandable format for colleagues 
and clients, including BLV users; preferred tools integrated with 
assistive technology; used Tableau, Power BI, and Excel; and con-
sulted sighted colleagues for assistance. Data communication goals 
help with choosing relevant chart types: (S11-B; legally blind) “All 
depends on the data and the story you are trying to tell with that 
data when it comes to choosing the various chart types. Building test 
charts with a subset of data to experiment is helpful.” Choice of charts 
are governed by the data, and visualization goals: (S5-LV) “There 
is not one or two types of data visualization that are more helpful 
to me than others. In general, common bar charts, pie charts, and 
line charts were most popular. Visualizations are hard to create 
when tools are inaccessible, or when data is complex (S19-B; legally 
blind): “The more complex a visualization is, the more difcult it can 
be for people with low vision to understand. For example, when I was 
working on a project to visualize data from diferent sensors, I used 
only one type of chart, the bar chart, and kept the number of bars in 
each chart to around four or fve. This made it easier for me to see 
how much each sensor was contributing to the total amount of data 
being collected.” Visualizations that ofer a clear linear path of data, 
or comprehensive overviews were preferred. S1-B mentioned the 
difculty in being confdent about colleagues’ visualization work, 
especially without being able to independently verify the represen-
tation: “I would say the greatest challenge is not being 100% confdent 
in the ability of my colleagues to render the information visually. I 
couldn’t double check on my own.” 

3.4 Accessible Visualization Practices and 
Challenges 

BLV individuals developed various strategies to access data visual-
izations, often relying on existing technologies or human assistance, 
and employing alternative, more accessible means such as tactile 
representations, alt-text, or other sensory methods. S1-B mentioned, 
“asking questions, using AI, and fnding alternative means of repre-
senting the data [in tactile form] worked well.” Some individuals 
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manually adjust data presentations to better suit their needs, in-
cluding enlarging images or altering colors and fonts to enhance 
readability. “I’ve copied many graphs into PowerPoint and enlarged 
them to fll a slide,” S7-B; legally blind explained. Tools that adjust 
the display settings like magnifcation, contrast, and color settings 
are crucial for those with low vision: (S5-LV) “screen enlargement, 
contrast tools, magnifers have been helpful.” Accessible color palettes 
and comprehensive text descriptions aid those with color blindness 
or low vision: (S11-B; legally blind) “General design principles make 
a big diference. Keeping in mind color palettes that are usable by 
individuals with color blindness and designing dashboards with good 
alternative text to be used by screen readers.” Some participants revert 
to purely statistical data analysis techniques, or other non-visual 
methods to extract necessary information: (S15-LV) “When data 
visualization is not accessible, I will try to use other data analysis 
methods, such as statistical analysis, data mining, etc.” Though not 
always efective, sonifcation, which converts data points into sound, 
can be benefcial for understanding simpler data relationships: (S8-
LV) “I tried sonifcation, but that did not work for me. The sound of 
the data was not interpretable to me, except with very simple linear 
relationships.” 

BLV users have personal preferences for alternate sensory modal-
ities: “I prefer them to be some sort of a tactile representation, but if I 
have to hear the audio, I prefer them to be diferent sounds to repre-
sent diferent lines on the chart.”(S5-LV). Preparing and transforming 
data into a format that can be visualized was challenging: (S21-LV) 
“When creating data visualizations, I faced two main challenges. First, 
I had to fgure out how to get the data into a format that could be 
visualized. This meant ingesting large amounts of raw data and then 
transforming it into something usable for analysis. Second, I had to 
create a visual representation that made sense and was easily under-
stood by others.” Perceiving and interpreting the overview of a chart 
was challenging: (S8-LV) “The largest challenge is getting a view of 
the entire graph at once (i.e., to understand the relationships between 
data points). I took a statistics class that required interpreting whether 
certain assumptions held based on the shape of the graph, and this 
was very challenging. This is where I learned the method of using a 
preview image.” 

4 Discussion and Conclusion 
Our study fndings add to the growing literature [6, 23, 24] on 
the lived data visualization experiences of BLV individuals. Our 
data, from both Blind (legally blind; no light perception; blind), 
and low-vision (visually impaired; low-vision; light perception) 
demonstrates ways in which a person’s abilities, impairments, and 
personal experiences infuences the preferred workarounds such as 
magnifcation, screen-readers, multimodal approaches, and depen-
dency on colleagues, to accessibility challenges at diferent stages of 
data analysis (data wrangling, analysis, and presentation). We fnd 
that Blind individuals needed to create visual data representations 
(visualizations and reports) for the sake of their sighted colleagues. 
While magnifcation and collaboration were most observed accessi-
bility solutions for Low-Vision individuals, a few participants (e.g., 
S8-LV) also tried multimodal approaches such as sonifcation. Con-
sidering the breadth of challenges for individuals the spectrum of 
blindness, we believe that fnding solutions for specifc data analysis 

tasks, making data science education accessible [19], and focusing 
future work on data science and analytical tasks in collaborative 
professional settings can lead to more “born accessible” technology. 

BLV professionals face pervasive accessibility challenges in data 
science due to the lack of implementation of accessibility guidelines 
(e.g., WCAG 2.2) in tooling solutions such as notebooks [18]. We 
found ambivalent views on multimodal accessibility options like 
sonifcation; while also fnding the utility of traditional textual and 
tactile forms [6]. Learning to use alternate forms can be challenging, 
but their potential ought not to be disregard prematurely. Combin-
ing modalities such as sound, touch, and speech to carry larger in-
formation bandwidths [20] can be advantageous. Future work must 
continue to explore efcient alternative to textual representations; 
particularly as many BLV professionals may not have experienced 
optimally designed sonifcation systems, which could ofer a more 
intuitive understanding of data when well-executed [3, 21, 22]. As 
recommended by Potluri et al. [18] and as seen in our data, there is 
a need to adapt data artifacts such as charts, reports, and data-rich 
notebooks to work with assistive technology such as screen-readers 
and magnifers. We recommend fnding solutions in which data 
artifacts can be easily translated to be equal and accessible non-
visual data representations [24]. Such methods can ensure that 
current data-rich environments can be accessed through individual 
or combined multimodal approaches such as sonifcation, refresh-
able braille displays, refreshable tactile displays (e.g., Graphiti and 
Monarch). 

Our fndings suggest an immediate need to create systems that 
enable BLV individuals, whether they are programmers or GUI 
users, to author visualizations independently [26]. By developing 
tools that are inherently accessible (“born accessible” [10]), we can 
shift the narrative from dependency to autonomy, allowing collab-
oration with sighted colleagues to stem from a desire for enhanced 
productivity [4] rather than a necessity due to inaccessible practices. 
We wish to conclude by discussing our future research direction: we 
want to conduct contextual inquiries with our survey participants 
to gather nuanced insights into the daily challenges and successes. 
Furthermore, we also intend to contribute to the efort for more 
inclusive visualization authoring for BLV workers. 
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